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Abstract

A method for the reduction of the number of particles in the weighted Monte Carlo method for kinetic equations is

described. The method randomly redistributes statistical weights over the particle ensemble in such a way that the

weight of some particles becomes 0, i.e., the particles are cancelled, while all physically relevant macroscopic moments

(e.g., mass, energy, momentum) of the ensemble do not change. The method has been applied to the spatially uniform

relaxation of a gas of hard spheres.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Monte Carlo simulation method (DSMC) is a statistical method for the computation of particulate

flows, either rarefied gas flows or aerosol flows [1,4,7]. The method can be formulated as follows. The flow

volume is divided into cells. The particle ensemble is represented by computational particles such that a

group of W identical molecules or particles in the physical system is substituted by one computational par-

ticle. The parameter Wi is the statistical weight of the ith computational particle. In the particular case
when Wi = W for all i, the method is called the direct simulation Monte Carlo (DSMC) method, while

the more general case is the stochastic weighted particle method (SWPM) [2,9,8,6]. Provided that the
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particles� sizes, positions and other necessary parameters are known at a time t, the particles� distribution at

time t + Dt can be calculated by an operator-splitting technique which comprises free flow and a spatially

homogeneous relaxation step. In the free flow phase the particles move, without any collisions occurring,

during the time interval Dt. Their positions, velocities, sizes, temperatures, etc., are determined from the

equations of motion, and heat and mass transfer. In the second splitting step binary collisions between par-
ticles in each cell are sampled randomly. At this step, a particle can collide only with those particles that are

in the same cell irrespective of the relative positions of the particles within the cell.

The accuracy of the method depends both on the size of the cells and on the number of particles in a

computational cell. Since the number of physical particles in a cell is proportional to the volume of the cell,

reduction of the cell size does not necessarily increase the precision of the calculations. For an accurate res-

olution of the collision physics one needs a minimum number of computational particles in each spatial cell.

If the number of computational particles in a cell is small, both averaged physical properties of the ensem-

ble, such as mass and momentum, and the collision rate of the particles are subjected to large spurious fluc-
tuations. A comprehensive discussion of the dependence of the number of particles on the particles density

and the geometry of the flows is given in [3].

The direct way to control the optimal number of computational particle in each cell is the use of statis-

tical weights [1,9]. If a particle weight decreases as it passes from one cell to another, the particle is cloned,

i.e., several copies of the mother particle with smaller weights are created. This procedure leads to an in-

crease in the number of particles in the system. Note, that in the case of the Boltzmann equation a collision

of two particles with different statistical weights forms at least three particles. Thus, a procedure for reduc-

tion of the number of particles in SWPM is necessary in order to keep the system computationally tractable.
The simplest method for reducing of number of particles is proposed in [1]. The trajectory of a particle is

either terminated with probability p, or the statistical weight of the particle is multiplied by 1/(1�p). While

this method is algorithmically simple, it satisfies the law of mass, momentum and energy conservation only

in a statistical sense. Thus, random creation/dissapearence of the particles leads to large spurious oscilla-

tions of the macroscopic parameters of the ensemble and impairs the accuracy of the calculations [3].

Boyd [2] proposed a conservative method for the simulation of trace species in nonequilibrium gas flows.

If a particle with smaller statistical weight which represent a trace species collides with a particle with larger

weight, three particles, one trace and two nontrace are created. Then, the nontrace molecules are merged in
such a way as to conserve the linear moment explicitly. The energy that is lost at this step is added to the

next nontrace interparticle collision. If the statistical weights of a trace species is much smaller than the sta-

tistical weights of the nontrace species, the proposed scheme introduces only very small fluctuations of

energy.

A method that preserves the number (or mass) of the particles in the Monte Carlo simulation of Smo-

luchowski�s equation is presented in [10,5]. If a randomly chosen particle is removed, its statistical weight is

redistributed among the other particles of the ensemble. If this method is conservative with respect to the

total mass, it is not conservative with respect to the number of particles and vice versa. When applied to a
multidimensional problem, this method does not preserve the momentum of the particles (for gas flow

simulations) or the mass of the components (for multicomponent population balance).

In order to avoid these difficulties an alternative method based on the clustering of particles has been

proposed in [9,8]. According to this approach, the particles are divided into groups (clusters) such that

the distance between the particles in the phase space (diameter of the cluster) is small. Then the cluster

can be replaced by a few particles which have the same physically important first statistical moments (mass,

momentum, energy, etc.) as the original cluster. Thus, the method creates some new ‘‘synthetic’’ particles

that approximate the ensemble in a mean-square sense, i.e., the solution of the Boltzmann equation is
smoothed as the algorithm proceeds further. The efficiency of the method depends on the efficiency of

the clustering algorithm, and the method introduces some systematic errors that decrease with the diameter

of the clusters.
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In the present study we propose a method that does not require a time-consuming clustering procedure

and does not smooth the solution of the equation. The method redistributes statistical weights of the par-

ticles in such a way that all physically relevant moments of the ensemble remain unchanged. We test this

method on the spatially homogeneous relaxation of a gas of hard spheres, but this method has a more gen-

eral area of applicability and can be used for any other population balance problem.
2. Description of the SWPM

Consider the spatially homogeneous Boltzmann equation for a gas of hard Spheres
of ðt;~uÞ
ot

¼
Z

Bð~u;~v;~eÞff ðt;~u0Þf ðt;~v0Þ � f ðt;~uÞf ðt;~uÞg d~vd~e; ð1Þ
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2

þ j~u�~v j
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� j~u�~v j
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where~e is a uniformly distributed unit vector, and~u; ~v and ~u0; ~v0 are the velocities of the particles before
and after the collision, repectively. The formula for the collision kernal Bð~u;~v;~eÞ is given by
Bð~u;~v;~eÞ ¼ 1

4
ffiffiffi
2

p
pKn

j~v�~u j; ð3Þ
where Kn is the Knudsen number.

The main idea of the weighted particles method [9] is the representation of the solution of Eq. (1) as
f ð~uÞ �
XN
i¼1

W idð~u�~uiÞ: ð4Þ
As the ith and jth particles collide, four new particles appear. Two of them with weights and velocities

Wi � w, Wj � w and ~ui;~uj, respectively. While the others have weight w and velocities ~u0i and ~u0j that are
calculated according to Eq. (2). The parameter w (w 6 Wi, w 6Wj) is the weight transfer function [9]. In

the partial case Wi = Wj = w the method is equivalent to DSMC and the number of particles does not

increase.

Integration of Eq. (3) over the unit sphere yields the formula for the collision rate between two particles:
B̂ð~u;~vÞ ¼ 1ffiffiffi
2

p
Kn

jv�~uj:
The total collision rate is given by
q ¼
X

16i<j6N

B̂ð~ui;~vjÞ
W iW j

w
:

The Monte Carlo algorithm [9] reads:

1. Generate an exponentially distributed time increment with parameter q.
2. Choose the pair for collision with probability
B̂ð~ui;~vjÞW iW j

qw
:
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3. Generate a uniformly distributed unit vector~e and create the new particles with parameters
ðW i � w;~uiÞ; ðW j � w;~ujÞ; ðw; ~u0iÞ; ðw; ~u0jÞ:
3. Reduction of the number of particles

As the number of particles in the system becomes too large, some of them have to be removed and their

statistical weights to be redistributed over the remaining particles. Our purpose is to construct an algorithm

that keeps the distribution function (4) statistically intact and also conserves physically important statistical

moments. These moments for gas flow are mass, momemtum and energy. Thus, no transformation of the
statistical weights can change the following moments:
m1 ¼
X
i

W i; m2 ¼
X
i

W iuxi; m3 ¼
X
i

W iuyi; m4 ¼
X
i

W iuzi; m5 ¼
X
i

W ij~uj2i : ð5Þ
Let us divide the particles into 6 groups Ik, i 2 Ik. The jth moment of the kth group is mjk, these moments

form a 5 · 6 matrix M. Consider a vector ~g ¼ ðg1; . . . g6Þ and multiply all the statistical weights of the kth

group by 1 + agk, where a is a scalar parameter. In order to keep the moments (5) unchanged one needs
mjkgk ¼ 0; ð6Þ
i.e, the vector~g has to be orthogonal to the subspace formed by the rows of the matrix M. Thus, the algo-

rithm for the reduction of the number of particles reads:

1. Generate a uniformly distributed unit vector ~g.
2. In order to satisfy Eq. (6) recalculate ~g as
~g :¼~g �MT ðMMT Þ�1M~g:
3. Find
a1 ¼ min
gk<0

� 1

gk

� �
:

4. Find
a2 ¼ min
gk>0

1

gk

� �
:

5. With probability a2/(a1 + a2) multiply all the statistical weights of the kth group by 1 + a1gk.
6. Otherwise multiply all the statistical weights of the kth group by 1�a2gk.

In order to demonstrate that the procedure described above keeps the solution of Eq. (1) statistically

intact, consider an arbitrary functional Hðf ð~uiÞÞ:
Hðf ð~uÞÞ ¼
Z

f ð~uÞhð~uÞ dð~uÞ �
X
i

W ihð~uiÞ ¼
X6

k¼1

X
i2Ik

W ihð~uiÞ: ð7Þ
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After the reduction of the number of particles, Eq. (7) becomes
Fig. 1.

differen
H 1ðf ð~uÞÞ �
X6

k¼1

X
i2Ik

ð1þ a1gkÞW ihð~uiÞ;
with probability a2/(a1 + a2), or
H 2ðf ð~uÞÞ �
X6

k¼1

X
i2Ik

ð1� a2gkÞW ihð~uiÞ;
with probability a2/(a1 + a2). Direct calculation shows that
hHðf ð~uÞÞi ¼ a2
a1 þ a2

H 1ðf ð~uÞÞ þ
a2

a1 þ a2
H 2ðf ð~uÞÞ ¼ Hðf ð~uÞÞ;
and the estimation (7) remains statistically intact for arbitrary hð~uÞ , while the statistical weights of one of
the groups of particles is 0.
4. Numerical experiment

We calculated spatially uniform, relaxation of a gas of hard spheres with Knudsen number Kn ¼
ffiffiffi
2

p
.

Two groups of particles with equal momenta and velocities ~u1 ¼ ð1; 0; 0Þ and ~u2 ¼ ð�9; 0; 0Þ, respectively,
collide and the process evolves toward thermodynamic equilibrium. The initial distribution reads:
f0ðux; uy ; uzÞ ¼
9

10
dðux � 1ÞdðuyÞdðuzÞ þ

1

10
dðux þ 9ÞdðuyÞdðuzÞ:
Three varients of the Monte Carlo particle method have been used in the simulations. Since the standard

DSMC method [1] has been well studied in the past, we refer to the results obtained by this method as ‘‘ex-
act’’. The SWPM has been run with two strategies for the reduction of the number of particles, namely, the

constant-number Monte Carlo method that was described in [10] and the conservative method proposed in

the present work. Initially the two colliding fractions has the same number of particles, while the fast par-

ticles have statistical weights which are nine times smaller. The weight transfer function w during a collision
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(b) N = 2400

Time evolution of rn (upper lines) and rt (low lines), DSMC method (dashed lines), constant-number MC (solid lines) for

t number N of particles.
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Fig. 2. Time evolution of rn (upper lines) and rt (low lines), DSMC method (dashed lines), conservative method (solid lines) for

different number N of particles. The confidence intervals are shown by dotted lines.
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of two particles with weights Wi and Wj is w = min(Wi,Wj) and three new particles grows, a special proce-

dure is necessary to tractable. In the present case as the number of particles reaches the maximum allowed

value, the reduction procedure is applied which terminates one sixth of the particles.

We calculated the second moments, the longitudinal moment rn ¼
R
ðf ð~uÞu2x d~u and the transversal mo-

ment rt ¼ 1=2
R
f ð~uÞðu2y þ u2z Þ d~u. We also controlled energy, momentum and mass conservation in DSMC

and in the conservative method (which are not conserved in constant-number MC). As the collision process

proceeds further, the moments relax from their initial values rn = 9 and rt = 0, respectively, toward the

equilibrium values rn = rt = 3. The results are presented in Figs. 1 and 2. In order to obtain reliable results
we run the DSMC method 100 times with N = 1000 particles in each run. The results of a single run of the

constant-number and conservative methods for different values of N are plotted in Figs. 1 and 2, respec-

tively. Since the constant-number MC method does not conserve momentum and energy of the particles,
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
log(N)

lo
g(

ε)

Fig. 3. Error of the conservative method versus number N of the particles in each run of the algorithm rn (diamonds) and rn (circles).
The �1/2 slope is shown by the dotted line.
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the solution significantly deviates from those by the DSMC method. As one can see, the solution obtained

by the conservative method is close to the ‘‘exact’’ one and is free from the large spurious fluctuations, un-

like the solution calculated by the constant-number method. In order to investigate how the maximum

number of particles N in a single run of the conservative methods affects the results, we run the method

L times. Since the total number of particles N · L = 1:2 · 105 was kept constant, the error in the calcula-
tions has a systematic character. We use maximum deviation
2 ðNÞ ¼ max krðNÞ � rexactk;

as a measure of the error. Then the results for different values of N are plotted in Fig. 3. As one can see,

2(N) � N�1/2.
5. Conclusion

We have proposed a conservative method for the reduction of the number of particles in the particle

Monte Carlo method. Although the method was tested on monoatomic gas relaxation, it can be applied

to arbitrary population balance problem such as fragmentation and coagulation. The method is based

on the redistribution of statistical weights in such a manner that it does not affect the physically relevant
statistical moments. The key idea of the proposed method is the division of the particles into groups

and the multiplication of the statistical weights of the kth group by a factor 1 � gk. If our purpose is to

conserve the a moments and the particles are divided into b groups (b > a), the moments conservation con-

dition means that the vector~g is orthogonal to the rows of the a · b matrix of moments M. The condition

M~g ¼ 0 together with the requirement that gk 6 1 (the moments are non-negative) implies that the vector~g
belongs to a (b � a)-dimensional convex polygon. Thus, (b � a) particles groups can be cancelled by choos-

ing randomly a corner point of the polygon. Additional research is necessary in order to find the optimal

distribution of particles into the groups and the optimal proportion between number of the groups and
number of the moments to be conserved by the transformation.
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